US009053030B2

a2z United States Patent (10) Patent No.: US 9,053,030 B2
Kanoh 45) Date of Patent: Jun. 9, 2015
(54) CACHE MEMORY AND CONTROL METHOD (56) References Cited

THEREOF WITH CACHE HIT RATE

(75) Inventor: Yasushi Kanoh, Tokyo (IP)

(73) Assignee: NEC CORPORATION, Tokyo (JP)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 179 days.

(21) Appl. No.: 13/144,820

(22) PCT Filed: Jan. 25, 2010

(86) PCT No.:

§371 (D),
(2), (4) Date:

PCT/IP2010/050907

Jul. 15, 2011

(87) PCT Pub. No.: 'WO02010/087310
PCT Pub. Date: Aug. 5, 2010

(65) Prior Publication Data
US 2011/0283041 Al Nov. 17,2011
(30) Foreign Application Priority Data
Jan. 28,2009 (JP) .ecoveiiiieiiiiiee 2009-016224
(51) Imt.ClL
GO6F 13/00 (2006.01)
GO6F 12/08 (2006.01)
(52) US.CL
CPC i GO6F 12/0842 (2013.01)
(58) Field of Classification Search
None

See application file for complete search history.

@ T
READBIGEK | [REPLACE
FROMEMORY | |y o
ANOWRITE
BLOCKINTO
8329 oaTAARRAY | | BLOCK

U.S. PATENT DOCUMENTS

6,405,288 B1* 6/2002 Changccoevenninine 711/143
2003/0110356 Al* 6/2003 Williams, III 711/133
2004/0225840 Al* 11/2004 O’Connor et al. .. . 711122
2006/0143396 Al* 6/2006 Cabot 711/134
2006/0218351 Al* 9/2006 Smithetal. 711/133
2006/0224829 Al* 10/2006 Evrard etal. 711/133
2006/0230223 Al* 10/2006 Krugeretal. 711/6
2007/0033470 Al* 2/2007 Damodaran et al. .. 714/733

2007/0283121 Al* 12/2007 Irishetal. 711202
2008/0065855 Al* 3/2008 Kingetal. 711207
2009/0164727 Al* 6/2009 Penton et al. 711118
2009/0187695 Al* 7/2009 Irishetal. ... 711/3

FOREIGN PATENT DOCUMENTS

JP 63-284649 A 11/1988

JP 4-270431 A 9/1992

JP 2002082832 A 3/2002

JP 2002268943 A 9/2002
OTHER PUBLICATIONS

International Search Report for PCT/JP2010/050907 mailed Apr. 6,
2010.

* cited by examiner

Primary Examiner — Sean D Rossiter
(74) Attorney, Agent, or Firm — Sughrue Mion, PLLC

(57) ABSTRACT

A cache memory comprises a data array that stores a cashed
block; a first address array that stores an address of the cached
block; a second address array that stores an address of a first
block to be removed from the data array when a cache miss
occurs; and a control unit that transmits to a processor the first
block stored in the data array as a cache hit block, when the
address stored in the second address array results in a cache
hit during a period before a second block which has caused
the cache miss is read from a memory and written into the data

array.

13 Claims, 15 Drawing Sheets

e e s311
BLOCK?,
No

5312 8322

WRITE DATATO
BLOCK DATA

READ DATA FROM
BLOCK DATA

8306

(B

END

CK DAT/
8317
END

U.S. Patent Jun. 9, 2015 Sheet 1 of 15 US 9,053,030 B2

FIG. 1

S’ 30

PROCESSOR

510

CACHE MEMORY
11
-

ADDRESS ARRAY A

N

20
e 12 -ngav
CONTROL N

ONIT > DATA ARRAY

<13
>

> ADDRESS ARRAY B

U.S. Patent Jun. 9, 2015

FIG. 2

Sheet 2 of 15 US 9,053,030 B2

ADDRESS REGISTER ,//2/ 101

e G e o
HIGH-ORDER mBITS nBIT LOW-ORDER k BITS

\f\? 14 MAVETIAN
N
orrser | 113405

118

105

EVICTION BLOCK 41 03 104
ADDRESS ARRAY f ADDRESS ARRAY 7/ DATA ARRAY
107 108 109 {110 111
AN IR Vi
/ /
UV NN N
HIGH-ORDER [BTATUE HIGH-ORDER IBTATUR BLOCK
m 8iTS BITSTRING | mRBITS BIT STRING {2 BYTE)
A 119
DATA
106
r ¥ ¥ k.
COMPARATOR A COMPARATOR B
COMPARISON RESULT B
; 116\ INSTRUGTION TYPE

115 COMPARISON RESULT A i

l\\x 17

controL uniT | 7" 120

U.S. Patent

FIG. 3

Jun. 9, 2015 Sheet 3 of 15 US 9,053,030 B2
‘J,««:Z//“' 201
THREE STATUS BITS
V D F
/ /
N
oop 203 204
/7/,/' 205
TWO STATUS BITS
V D
// /
//L /’L'

206 207

U.S. Patent Jun. 9, 2015 Sheet 4 of 15 US 9,053,030 B2

FIG. 4

START

— . S301
store - zwsmucﬁé‘ﬁ\x load

8314

/?:ACH E V

Yes

1
READ BLOCK REPLACE
FROM EMORY BLOCK

AND WRITE
BLOCK INTO AND READ

S329 ¢ DatA ariay | | BLOCK

k J h 4

WRITE DATATO
BLOCK DATA
¥ ¥ 5306
WRITE DATA TO =
BLOCK DATA SETf 1 S307

SETD=1

333
(" END

y
READ BLOCK

S311 S312 8322

REPLACE
BLOCK EROM EMORY
AND READ | | 2O WRITE
BLOCK INTO S
BLOCK DATAARRAY | X7 334
Yes
S321 4s EVIGT!O\M>__
BLOCKZ.~
$326 |No
¥ X X
READ DATA FROM
BLOCK DATA

8317

U.S. Patent

Jun. 9, 2015 Sheet 5 of 15 US 9,053,030 B2
{ START }
¥
401
Evzc'rm\o No
ADDRESS ARRAY >
VACANT?
PEREORM ‘é\!ﬁg&@gw
COPYING TO BLOCK FROM
S404 | EVICTION ADDRESS ‘ 3403 | ieviory BEING
ARRAY FOR ARRIVAL OF =
EVICTION S412 | reEAD BLOCK =XECUTED
¥y
N NVALIDATION
0 EVICTED e
REWRITTEN? 5413 R iy
S414
407 | WRITE BACK BLOCK
407 5'ock NCLQ TO BE EVICTED
TO BE EVICTED o REWRITTEN?
> N
L4
e 1| PYE
)
S409 | wricH HAS CAUSED R BACK
CAGHE MISS TO BE EVICTED
SR ~
FROM MEMORY WRITE
1 sa18 READ BLOCK
WAT EOR *
S411|8 pek DATA ARRAY
FROM MEMORY

END

U.S. Patent Jun. 9, 2015 Sheet 6 of 15 US 9,053,030 B2

FIG. 6

501
ADDRESS REGISTER ///

e VA S —,
HIGH-ORDER mBITS nBIT LOW-ORDER k BITS

\
522 520 \j\ggg
OFFSET \N521
aporess 992 appress 03 504 para 505 para 506
ARRAY [ARRAY [/ EVICTIONBLOCK / ARRAY ARRAY
WAY0) 7 wAYl 7 AODRESSARRAY / (WAYQ) / wavh /
5111512 515 5‘3?517’ 518 519
{
N N v \
v / ; ¥ e . i
[T S e e N BLOCKDATA | BLOCKDATA
mi?:: - mi’ff S NowsEs {2 BYTE) {3 BYTE)
A Gl
507 508 509 530 531
§ v] § ! B : ¥ ¥
COMPARATOR || COMPARATOR COMPARATOR DATA
A 8 C

COMPARISON| COMPARISON
SZARESULT B § RESULTC } INSTRUCTION TYPE

COMPARISON | | “524 | 525 AN
RESULT A - . % 528
CONTROL UNIT 7510

U.S. Patent Jun. 9, 2015 Sheet 7 of 15 US 9,053,030 B2

FIG. 7

/’
store __—NsTRUCTION

" ? ——
TYPE? -

S616

v Yes 3
READ BLOCK | || pepyacE REPLACE || IREADBLOCK
FROM EMORY] BLOCK 8LOCK FROM EMORY] No
AND WRITE ANEY READ AND READ AND WRITE
TIPDATE B QCK INTO BLOCK BLOCK SLOCK INTO TBAATE
LRU DATA ARRAY DATA ARRAY LRU
S608 i« S620 S621 3639 ggas
¥
Yes
OCK BE|
READ?
S8097 No
L 4 ¥
WRITE DATA TO BLOCK DATA READ DATA FROM BLOCK DATA
OF CORRESPONDING WAY OF CORRESPONDING WAY
WRTEDATATO Y S612 8632 RERD DATAERON
?Lﬁ‘:*f%{g‘y wayl [SETD=1 ¥ BLOCK DATA
v / 5613 { EN@ INDICATED BY WAY
‘ NUMBEWR
v 5615 ey S634
SETD = 1 i\fND

U.S. Patent

Jun. 9, 2015 Sheet 8 of 15 US 9,053,030 B2
START |
S
SELECT FROM LRU
waY 10 BE RepLACED] S701
702
EVICTION ™~ No
ADDRESS ARRAY
YACANT?
"
FERFORM COPYING No TOBE EVICTED
S711 TO EVICTION ADDRESS ¥ REWRITTEN?
ARRAY FOR EVICTION $719 éﬁﬁé’é& g&
S706
S712 WRITE BACK
BLOCK SEREORN BLOCK
NO__~"T0 8¢ EVICTED INVALIDATION TO BE EVICTED
TS REWRITTEN? o~ S720 | rorEvicTION
ADDRESS ARRAY »
A 4
8714 Yes / gg; fg{}%g;ss ARRAY
OR BLOCK WHICH
WRITE BACK S721 BLOCK S7081HAS CAUSED
BLOCK TO BE Nq TO BE EVICTED CACHE MISS
EVICTED REWRITTEN?
> READ BLOCK
L 4 S723 FROM MEMGRY
SET ADDRESS 8709 AND
G716 | ARRAY FORBLOCK WRITE BAGK WRITE BLOCK
WHIOH HAS CAUSED BLOCK INTO DATA ARRAY
CACHE MISS TOBE EVICTED
;S{%J%gfﬁg(gw * (END
S717 | slock , ")
FROM MEMORY
v B AD BLOGK
A
WAIT S7 25 INTO DATA ARRAY
FOR BLOCK
S718 | rrom vicwory

END

US 9,053,030 B2

Sheet 9 of 15

Jun. 9, 2015

U.S. Patent

\

508

808 08 | 608
\

i./ /7/ M)\

00 100112000991L00000%X0] {01 1{L000991L00000%0] | 0 |
oN OA AVHRVSSIHOOY 40 5/ (L Aym) J0A \(\ {0 AYMJ
AYM Y3018 NOLLDIAT / Kvey sSaMaay Ay $S3HaaY

08 £08
208
A AN
peo; 1000100 53988_ £00099100000%0

5@\#\

H1S193Y SS3HAAY

6 9Oid

US 9,053,030 B2

Sheet 10 of 15

Jun. 9, 2015

U.S. Patent

A

|V

G08

L8

018
AN

L08

AN

1112

100092100000%0

00112000291 000000 101 L100092100000%0} | | e

ON (A AYHdY SSIHGAY H0A

AYM

0079 NOILLOIAG

ped

{1 Avm) QA

AVHEY SS3HAaAV

(0 Ayan) OWT

AVHHY S834AAY

000100

LEOL0L0000

£000°3100000%0

Y318103d SS3HaayY

0L "Old

US 9,053,030 B2

Sheet 11 of 15

Jun. 9, 2015

U.S. Patent

€1y

108
bl T\

01

1000201 00000%0

00L{2000°31L00000%0| 101 11100093100000X%0} | |

ON (A AVHYY SSEHACY 40A

AV

#2074 NOILOIAZ

pEQ]

{1 Avm) H0A \,\ (0 AV N

AVHEY SSRHOTY ¢dg

AVHEY
S53-AAY

000100

L 101010000 €000°3100000%0

HILSIOTY SS3HATY

Ll Old

US 9,053,030 B2

Sheet 12 of 15

Jun. 9, 2015

U.S. Patent

A%

o1 8
5 L08
N\ | M\
o | o1 11o0093100000%0| |001]200000100000%0] 11L01iS00022100000%0| | 1
ON QA Avdav 553300V 40A (L AVAY 40A {0 AV N
AVM W08 NOLLOIAS AYHHY SS3HAAY AVHYY $SI40AY
908\
N
peo; [000LO0IL LOLOLO00O| £00692L00000X0

,\ A2LSID3Y S839AAY
_‘ow\

¢l "Old

US 9,053,030 B2

Sheet 13 of 15

Jun. 9, 2015

U.S. Patent

118
218 _ 018
) 5 NN
0 | L [LOOOOOLO0000X0] [COLIZO00OTL00000X0| HOLIE000221L00000%0 1) "
a Gh Avadv ssagaay J0A v NI \< oo
11
dog SO0 NOLLOIA p0d /Moy ssiaay £ ARV SS3HATY
c08 908\
4/. </
si05 10001 10/110101L0600] LOOOODL00000X0
YV Y3LSIOTY SSINACY

108’

¢l Oid

US 9,053,030 B2

Sheet 14 of 15

Jun. 9, 2015

U.S. Patent

L8
M
0 {10 [LO0022L00000X0] {001|2000°2L00000X0] [LOL{E000°01L00000X0 | |
\\ oN GA AveRdv SS3uaqy J0A (s Avp) H0A (0 Aym) M1
G088 AVM WOOE NOHDIAS AVHHY SS3HAAY AV SSIHAAY
d3LSI03H SSIHAAY

i "Old

US 9,053,030 B2

Sheet 15 of 15

Jun. 9, 2015

U.S. Patent

¢i8
\

C18

L0

£000CCL00000%0

1001

2000521 00000X0} 1001£000°2100000%0

oN OA AvddY SSIHJQY

AYM

HO0TE NOLLOIAG

0A

Gavml 30A4 7 (0Avm)
AVHYY SSIHAQY m@m AVHYY SSTHCAY

N1

318103y 583400V

gL "Old

US 9,053,030 B2

1

CACHE MEMORY AND CONTROL METHOD
THEREOF WITH CACHE HIT RATE

REFERENCE TO RELATED APPLICATION

The present application is the National Phase of PCT/
JP2010/050907, filed Jan. 25, 2010, which is based upon and
claims the benefit of the priority of Japanese Patent Applica-
tion No. 2009-016224 (filed on Jan. 28, 2009), the disclosure
of which is incorporated herein in its entirety by reference.

TECHNICAL FIELD

The present invention relates to a cache memory and a
control method of a cache memory. More specifically, the
invention relates to a cache memory and a control method of
a cache memory accessed by a multi-core or multi-thread
processor.

BACKGROUND

Cache memories improve memory access performance of
a computer based on temporal locality of access in which
once-accessed data is likely to be accessed again and spatial
locality of'access in which it is highly probable that data close
to the once-accessed data will be accessed. The capacity of a
cache memory is, however, limited. Accordingly, it is neces-
sary to efficiently utilize the limited capacity to improve a
cache hit ratio. A location of the cache memory where a block
to be cached is stored differs according to the mapping
method of the cache memory.

Ina full associative method, each block can be stored in any
location of a cache memory. Thus, the cache memory can be
efficiently utilized. In the full associative method, however,
when searching whether or not there is a block in the cache, all
blocks in the cache must be searched. Accordingly, it takes
time to perform the search.

A direct mapping method is a method by which a search
within a cache memory can be performed most simply. In the
direct mapping method, a location where each block is stored
is limited to a predetermined portion of the cache memory. In
the direct mapping method, however, the location where each
block is stored is fixed. Accordingly, a plurality of blocks to
be stored in a same location cannot be simultaneously cached
in the cache memory.

An N-way set associative method is intermediate between
these two methods. In the N-way set associative method,
there are N locations for storing a certain block, in a cache
memory. That is, N blocks to be stored in a same location in
the cache memory can be simultaneously cached. Further,
when it is searched whether or not a block has been cached in
the cache memory, N locations should be searched.

Patent Document 1 describes a victim cache memory for
storing a block targeted for replacement and evicted from a
cache memory so as to cache another block when a cache miss
has occurred. The victim cache in Patent Document 1 is a
cache of a small capacity (of several blocks) using the full
associative method, and caches a block evicted from the
cache memory. When a block in the victim cache memory has
resulted in a cache hit, an evicted block and the block which
has resulted in the cache hit are swapped (exchanged)
between the cache memory and the victim memory.

Patent Document 1: JP Patent Kokai Publication No. JP-A-

4-270431

SUMMARY

The entire disclosure of Patent Document listed above is
incorporated herein by reference thereto. The following
analyses are given by the present invention.

10

20

25

30

35

40

45

50

55

60

65

2

The victim cache memory described in Patent Document 1
has just the capacity of several blocks. Thus, a period of time
where a block is held in the victim memory is considered to be
short. The technology described in Patent Document 1 is a
technology for improving a cache memory hit ratio by using
a high likelihood of data that has been cached and evicted
being accessed again immediately after the data has been
evicted.

On the other hand, due to advancement of multi-core tech-
nology and multi-thread technology in a CPU, memory
accesses by a plurality of threads may simultaneously occur
to a cache memory. These memory accesses are made by the
plurality of independent threads, and have no causal relation.
A plurality of cache misses may therefore simultaneously
occur. Accordingly, compared with the case of a single core or
a single thread, the number of the cache misses that simulta-
neously occur may increase, so that a plurality of memory
accesses caused by the cache misses may be simultaneously
issued.

Inthe technology of the victim cache memory described in
Patent Document 1, memory accesses from a multi-core or
multi-thread CPU in which a plurality of cache misses may
simultaneously occur cannot be efficiently processed. The
reason for this is as follows. The victim cache memory is the
cache memory of the small capacity (of several blocks) using
the full associative method. Thus, when a plurality of cache
misses have simultaneously occurred, a capacity of blocks
which have caused the cache misses exceeds the capacity of
the victim cache memory. When the capacity of the victim
cache memory is increased so as to accommodate the plural-
ity of cache misses, it is difficult to adopt the full associative
method.

Therefore, there is a need in the art to provide a cache
memory and a control method of a cache memory that
improve a cache hit ratio of memory accesses from a multi-
core or multi-thread processor.

According to a first aspect of the present invention, there is
provided a cache memory comprising:

a data array that stores a cashed block;

afirstaddress array that stores an address of the cached block;

a second address array that stores an address of a first block to
be removed from the data array when a cache miss occurs;
and

a control unit which transmits to a processor the first block
stored in the data array as a cache hit block, when the
address stored in the second address array results in a cache
hit during a period before a second block that has caused
the cache miss is read from a memory and written into the
data array.

According to a second aspect of the present invention, there
is provided a cache memory comprising:
an address array that stores an address of a block to be

removed from a data array when a cache miss occurs; and
a control unit that transmits to a processor the block stored in

the data array as a cache hit block, when the address stored
in the address array results in a cache hit during a period
before a block that has caused the cache miss is read from

a memory and stored in the data array.

According to a third aspect of the present invention, there is
provided a control method of a cache memory comprising a
data array that stores a cached block, a first address array that
stores an address of the cached block, and a second address
array, the method comprising:
storing in the second address array an address of a first block

to be removed from the data array when a cache miss

occurs; and

US 9,053,030 B2

3

transmitting to a processor the first block stored in the data
array as a cache hit block, when the address stored in the
second address array results in a cache hit during a period
before asecond block that has caused the cache miss is read
from a memory and written into the data array.

The present invention provides the following advantage,
but not restricted thereto. According to the cache memory and
the control method of the cache memory of the present inven-
tion, a cache hit ratio of memory accesses from a multi-core
or multi-thread processor can be improved.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing a configuration of a
cache memory according to an exemplary embodiment.

FIG. 2 is a diagram showing a configuration of the cache
memory in a first example.

FIG. 3 includes diagrams showing status bit strings in each
of'the cache memory in the first example and a cache memory
in a second example.

FIG. 4 is a flowchart showing operation of the cache
memory in the first example.

FIG. 5 is a flowchart showing a block replacement opera-
tion and a block read operation of the cache memory in the
first example.

FIG. 6 is a diagram showing a configuration of the cache
memory in the second example.

FIG. 7 is a diagram showing operation of the cache
memory in the second example.

FIG. 8 is a flowchart showing a block replacement opera-
tion and a block read operation of the cache memory in the
second example.

FIG.9is a diagram for explaining an operation of the cache
memory in the second example.

FIG. 10 is a diagram for explaining an operation of the
cache memory in the second example.

FIG. 11 is a diagram for explaining an operation of the
cache memory in the second example.

FIG. 12 is a diagram for explaining an operation of the
cache memory in the second example.

FIG. 13 is a diagram for explaining an operation of the
cache memory in the second example.

FIG. 14 is a diagram for explaining an operation of the
cache memory in the second example.

FIG. 15 is a diagram for explaining an operation of the
cache memory in the second example.

PREFERRED MODES

In the present disclosure, there are various possible modes,
which include the following, but not restricted thereto. A
cache memory according to an exemplary embodiment will
be described with reference to drawings. FIG. 1 is a block
diagram showing a configuration of the cache memory in the
present exemplary embodiment. With reference to FIG. 1, a
cache memory 10 comprises an address array All, a data
array 12, an address array B13, and a control unit 14. The
cache memory 10 is connected to a memory 20 and a proces-
sor 30.

The first address array A11 stores the address of a cached
block. The data array 12 stores the cached block. The second
address array B13 stores the address of a first block which is
a block to be evicted from the cache memory when a cache
miss occurs.

Before a second block, which is a block that has caused the
cache miss, read from the memory 20 and written into the data
array 12, the control unit 14 transmits the first block stored in

10

15

20

25

30

35

40

45

50

55

60

65

4

the data array 12 to the processor 30 as a cache hit block when
the address stored by the address array B13 has resulted in a
cache hit.

According to the cache memory in this exemplary embodi-
ment, the block (or the first block) to be evicted due to the
cache miss can be processed as the cache hit block during a
period where the block (or the second block) that has caused
the cache miss is read from the memory 20 and is then stored
in the data array 12 of the cache memory 10. Accordingly, a
follow-on access to the block to be evicted due to the cache
miss is cache hit for a given period of time. A cache hit ratio
can be thereby improved. Further, according to the cache
memory in the present exemplary embodiment, even ifa lot of
cache misses have simultaneously occurred and even if there
are a lot of blocks to be evicted, cash hit can be made to occur
for a given period of time. A block which has caused a cache
miss is defined to be a block that is not stored in the data array
12 of the cache memory 10, and to be read from the memory
20 and stored in the data array 12.

Preferably, the control unit 14 invalidates the address ofthe
first block stored by the address array B13 when writing the
second block read from the memory 20 into the data array 12.
This operation is performed to allow the control unit 14 to
recognize that the first block has been replaced by the second
block in the data array 12 and the first block is no longer
present in the cache memory 10.

Preferably, the address array B13 stores an identifier for a
way of the data array 12 in which the first block is stored. This
operation is performed because the cache memory and a
control method of the cache memory according to the present
exemplary embodiment can be expanded to an N-way asso-
ciative method.

Preferably, the address array B13 stores a flag indicating
whether or not the first block has resulted in the cache hit and
has been rewritten. In this case, before the second block is
read from the memory 20 and written into the data array 12,
the control unit 14 preferably refers to the flag stored in the
address array B13 and, if the first block has been rewritten,
writes back the first block into the memory 20. This operation
is performed, because, in doing so, cache coherency (coher-
ency of the cache) can be maintained.

Preferably, an electronic computer comprises the cache
memory 10 described above. The electronic computer may
further comprise a multi-core or multi-thread processor. By
including the cache memory according to this exemplary
embodiment, a cache hit ratio of memory accesses can be
improved in the electronic computer including the multi-core
or multi-thread processor.

FIRST EXAMPLE

A cache memory according to a first example will be
described in detail with reference to drawings.

Referring to FIG. 2, the cache memory in the first example
comprises an address register 101, an address array 102, an
eviction block address array 103, a data array 104, a com-
parator A 105, a comparator B 106, and a control unit 120.

The address array 102 is a memory having 2” entries. One
entry includes high-order in bits 107, which are a part of the
address of a block and a status bit string 108 indicating a
status of that block.

The eviction block address array 103 is a memory having
2” entries. Each entry includes high-order m bits 109, which
are a part of the address of a block, and a status bit string 110
indicating a status of that block.

The data array 104 is a memory having 2” entries. Each
entry stores a block 111 of 2* bytes.

US 9,053,030 B2

5

The comparator A 105 compares the high-order m bits 114
in the address register with the address of the high-order in
bits 107 of the entry in the address array 102 accessed using
n bits 112 in the address register 101 as an offset 113. When
the m bits 114 match the high-order m bits 107, it means that
the entry of the block is already present in the cache memory.

The comparator B 106 compares the high-order m bits 114
in the address register with the address of the high-order m
bits 109 of the entry in the eviction block address array 103
accessed using then bits 112 in the address register 101 as the
offset 113. When the m bits 114 match the high-order m bits
109, it means that the entry of the block is already present in
the cache memory.

The control unit 120 controls the cache memory, based on
a comparison result A115 from the comparator A 105, a
comparison result B 116 from the comparator B 106, a
instruction type (load or store) from a CPU, the status bit
string 108 in the address array and the status bit string 110 in
the eviction block address array which have been read.

In the following explanation, it is assumed that each
address stored in the address register 101 is composed of 64
bits, k=6 or the size of each block is 64 bytes, n=10 or the
number of entries of each of the address array 102, eviction
block address array 103, and the data array 104 is 1024, and
m=48. It is also assumed that the cache memory in the present
example is a cache memory using a direct mapping method.

Next, operation of the cache memory in FIG. 2 will be
described. When an access to the cache memory is made, the
address of the access is set in the address register 101. The
address may be a logical address, or a physical address. It is
assumed herein that the address is the physical address trans-
lated from a virtual address by some address translation
means.

Since the size of each block is 64 bytes, low-order 6 (k) bits
118 in the address register 101 constitute the address of the
block. Using the 10(n) bits 112 which are higher-order than
the low-order 6 (k) bits 118 as the offset 113, an entry in each
of'the address array 102 and the eviction address array 103 is
read.

The comparator A 105 compares the high-order 48 (m) bits
107 of the address of the read entry with the high-order 48 (m)
bits 114 in the address register 101, and the comparator B 106
compares the high-order 48 (m) bits 109 of the address with
the high-order 48 (m) bits 114 in the address register 101 to
determine whether or not the entry of that block is already
present in the cache memory.

The comparison result A115 and the comparison result B
116 are supplied to the control unit 120 together with the
instruction type (load, store) 117, the status bit string 108 of
the entry read from the address array 102 and the status bit
string 110 of the entry read from the eviction block address
array 103 to determine the operation of the cache memory.
Determination of the operation by the control unit 120 and
details of the operation will be described later in a part of
description of the operation.

FIG. 3 describes the status bit strings 108 and 110 in FIG.
2 in detail. Three status bits 201 in the address array 102 are
composed of three bits which are constituted from a flag V202
indicating whether or not the entry of the address array is
valid, a flag D203 indicating whether or not the block of the
data array has been rewritten, and a flag F204 indicating
whether or not the block of the address array is being read
from the memory.

When the entry of the address array 102 is valid, the flag
V202 indicates 1. When the entry of the address array 102 is
invalid, the flag V202 indicates 0. When the block has been
rewritten, the flag D203 indicates 1. When the block has not

40

45

55

6

been rewritten, the flag D203 indicates 0. When the block of
the address array is being read from the memory, the flag F204
indicates 1. When the block of the address array is not being
read from the memory, the flag F204 indicates 0.

Two status bits 205 of the eviction block address array 103
includes two bits which are a flag V206 indicating whether or
not the entry of the eviction block address array is valid and a
flag D207 indicating whether or not the block of the data array
has been rewritten.

When the entry of the eviction block address array 103 is
valid, the flag V206 indicates 1. When the entry of the eviction
block address array 103 is invalid, the flag V206 indicates 0.
When the block has been rewritten, the flag D207 indicates 1.
When the block has not been rewritten, the flag D207 indi-
cates 0.

Next, operation in the first example will be described in
detail with reference to the components in FIG. 2 and the bit
strings in FIG. 3 each indicating a status and others.

FIG. 4is a flowchart explaining determination of the opera-
tion by the control unit 120 in FIG. 2 and the operation.

An accessed address is stored in the address register 101 in
FIG. 2, and entries in the address array 102, the eviction block
address array 103, and the data array 104 are accessed using
the 10 (n) bits 112 in the address register 101.

Determination of the operation by the control unit 120 and
the operation at this point will be described.

The control unit 120 determines a process to be performed
according to the instruction type 117 from the CPU (in step
S301).

First, when the instruction type 117 is store (store in step
S301), the control unit 120 determines whether or not a cache
hit has occurred (in step S303). The control unit 120 deter-
mines whether or not accessed data has resulted in the cache
hit according to the comparison result A115 from the com-
parator A 105, the comparison result B 116 from the com-
parator B 106, the status bit string 108 in the address array 102
and the status bit string 110 in the eviction block address array
103 (in step S303). When the comparison result A115 indi-
cates a match and the flag V202 of the status bit string 108
indicates 1, or when the comparison result B 116 indicates a
Match and the flag V206 of the status bit string 110 indicates
1, the control unit 120 determines that the accessed data has
resulted in the cache hit (Yes in step S303).

On the other hand, when the comparison result S115 indi-
cates a mismatch or when the flag V202 of the status bit string
108 indicates 0, the control unit 120 determines that the
accessed data has caused a cache miss when the comparison
result B 116 indicates a mismatch or when the flag V206 of
the status bit string 110 indicates 0 (No in step S303).

When the accessed data has resulted in the cache hit (Yes in
Step S303), the control unit 120 determines in which one of
the normal address array 102 and the eviction block address
array 103 the cache hit has occurred, based on whether or not
the comparison result A115 has indicated the match or the
comparison result B 116 has indicated the match (in step
S329).

When the cache hit has occurred in the normal address
array (No in step S329), the control unit 120 determines
whether or not the block of the accessed address is being read,
based on the flag F204 of the status bit string 108 (in step
S323). When the flag F204 indicates 1, and then when the
control unit 120 determines that the block is being read (Yes
in step S323), the control unit 120 waits for completion of the
reading. When the flag F204 indicates 0 and then when the
control unit 120 determines that the block is not being read
(No in step S323), the control unit 120 specifies the word of
data in the block, based on low-order 6 (k) bit data (in step

US 9,053,030 B2

7

S306), and writes write data in the word, and sets the flag
D203 of the status bit string 108 to 1 (in step S307).

When the cache hit has occurred in the eviction block
address array 103 (Yes in step 329), the control unit 120
specifies the word of data in the block, based on the data of
low-order 6 (k) bits, and writes write data to the word (in step
S332). Then, the control unit 120 sets the flag D207 of the
status bit string 110 to 1 (in step S333).

When the accessed data has caused the cache miss (No in
step 303), the control unit 120 determines whether or not
replacement of a cache block will occur (in step S308). When
there is a block which already uses the entry (for which the
flag V202 of the status bit string 108 indicates 1), the control
unit 120 determines that the replacement will occur (Yes in
step 308). On the other hand, when that entry is vacant (or the
flag V202 of the status bit string 108 indicates 0), the control
unit 120 determines that the replacement will not occur (No,
in step 308).

When the control unit 120 determines that the replacement
of'the block will not occur (No in step S308), the control unit
120 stores the high-order m bits 114 in the address register
101 in the high-order m bits in the address array 102, sets the
flag V202 and the flag F204 of the status bit string 108 to 1,
and reads the block from the memory. Then, when the read
block has arrived, the control unit 120 writes the read block to
the block 111 of the data array 104, and sets the flag F204 of
the status bit string 108 in the address array 102 to O (in step
S311). Then, the control unit writes the data into the block
111 (in step S306), and sets the flag D203 of the status bit
string 108 in the address array 102 to 1 (in step S307).

When the control unit 120 determines that the replacement
of the block will occur (in step S309), the control unit 120
performs the replacement of the block and block reading (in
step S312). Step S312 will be described later, with reference
to FIG. 5. After step S312, the control unit 120 writes the data
in the block (in step S306), and sets the flag D203 of the status
bit string 108 in the address array 102 to 1 (in step S307).

Next, when the instruction type 117 is load (load in step
S301), the control unit 120 determines whether or not a cache
hit has occurred (in step S314). The control unit 120 deter-
mines whether or not accessed data has resulted in the cache
hit according to the comparison result A115 from the com-
parator A 105, the comparison result, B 116 form the com-
parator B 106, the status bit string 108 in the address array 102
and the status bit string 110 in the eviction block address array
103 (in step S314).

When the comparison result A115 indicates a match and
the flag V202 of the status bit string 108 indicates 1, or when
the comparison result B 116 indicates a match and the flag
V206 of the status bit string 110 indicates 1, the control unit
120 determines that the accessed data has resulted in the
cache hit (Yes in step S314).

On the other hand, when the comparison result S115 indi-
cates a mismatch or when the flag V202 of the status bit string
108 indicates 0, the control unit 120 determines that the
accessed data has caused a cache miss when the comparison
result B 116 indicates a mismatch or when the flag V206 of
the status bit string 110 indicates 0 (No in step S314).

When the accessed data has resulted the cache hit (Yes in
Step S314), the control unit 120 determines in which one of
the normal address array 102 and the eviction block address
array 103 the cache hit has occurred, based on whether the
comparison result A115 indicates the match or the compari-
son result B 116 indicates the match (in step S334).

When the cache hit has occurred in the normal address
array (No in step S334), the control unit 120 determines
whether or not the block of the accessed data is being read,

30

35

40

45

50

55

60

65

8

based on the flag F204 of the status bit string 108 (in step
S326). When the flag F204 indicates 1, and then when the
control unit 120 determines that the block is being read (Yes
in step S326), the control unit 120 waits for completion of the
reading. On the other hand, when the flag F204 indicates 0
and then when the control unit 120 determines that the block
is not being read (No in step S326), the control unit 120
specifies the word of data in the block, based on data of
low-order 6 (k) bits, and reads the word from the block 111 (in
step S317).

When the cache hit has occurred in the eviction block
address array 103 (Yes in step 334), the control unit 120
specifies the word of the data in the block, based on the data
of'low-order 6 (k) bits, and reads the word from the block 111
(in step S317).

When the accessed data has caused the cache miss (No in
step 314), the control unit 120 determines whether or not
replacement of a cache block will occur (in step S318). When
there is a block which already uses the entry (and for which
the flag V202 of the status bit string 108 indicates 1), the
control unit 120 determines that the replacement will occur
(Yes in step 318). On the other hand, when that entry is vacant
(or the flag V202 of the status bit string 108 indicates 0), the
control unit 120 determines that the replacement will not
occur (No, in step 318).

When the control unit 120 determines that the replacement
of'the block will not occur (No in step S318), the control unit
120 stores the high-order m bits 114 in the address register
101 in the high-order m bits in the address array 102, sets the
flag V202 and the flag F204 of the status bit string 108 to 1,
and reads the block from the memory. Then, when the read
block has arrived, the control unit 120 writes the read block to
the block 111 of the data array 104, and sets the flag F204 of
the status bit string 108 of the address array 102 to O (in step
S321). Next, the control unit reads the data from the block 111
(in step S317).

On the other hand, when the control unit 120 determines
that the replacement of the block will occur (Yes in step
S318), the control unit 120 performs the replacement of the
block and block reading (in step S322). Step S322 will be
described later, with reference to FIG. 5. After step S322, the
control unit 120 reads the data from the block (in step S317).

Next, steps S312 and S322 in FIG. 4 will be described, with
reference to FIG. 5.

First, the control unit 120 determines whether or not the
entry of the eviction block address array 103 is vacant (in step
S401). When the flag V206 of the status bit string 110 in the
eviction block address array 103 indicates 0, the control unit
120 determines that the entry is vacant. When the flag V206 of
the status bit string 110 in the eviction block address array 103
indicates 1, the control unit 120 determines that the entry is
not vacant (in step S401).

When the control unit 120 determines that the entry is not
vacant (No in step S401), a cache miss has already occurred,
and the block reading from the memory for the replacement is
being executed. Thus, the control unit 120 waits for comple-
tion of the block reading (in step S403). After the reading has
been completed, the operation returns to step S401.

When the control unit 120 determines that the entry is
vacant (Yes in step S401), the control unit 120 copies the
high-order m bits 107 in the address array 102 to be evicted to
the high-order m bits 109 in the eviction block address array
103. Then, the control unit 120 sets the flag V206 and the flag
D207 of the status bit string 110 to 1 and 0, respectively (in
step S404). Next, the control unit 120 determines whether or

US 9,053,030 B2

9

not the block to be evicted has been rewritten, based on
whether the flag D203 of the status bit string 108 indicates 1
or 0 (in step S405).

Only when the control unit 120 determines that the block to
be evicted has been rewritten (Yes in step S405), the control
unit 120 writes back the block 111 in the data array 104 to the
address indicated by the high-order m bits 107 in the address
array 102 (in step S407).

Next, the control unit 120 copies the high-order m bits 114
in the address register 101 to the high-order m bits 107 in the
address array 102. Further, the control unit 120 sets the flag
V202 and the flag F204 of the status bit string 108 in the
address array 102 to 1, and sets the flag D203 of the status bit
string 108 to O (in step S409). Then, the control unit 120 issues
to the memory a request for reading the block which has
caused the cache miss (in step S410). Next, the control unit
120 waits for arrival of the block from the memory (in step
S411).

During a period before arrival ofthe block, the block which
has been invalid in a related art and will be evicted becomes
valid on the eviction block address array. Data in the block
which will be evicted remains in the block 111 of the data
array 104.

Next, the block which has been read arrives at the cache
memory (in step S412). The control unit 120 sets the flag
V206 of the status bit string 110 in the eviction block address
array 103 to 0, for invalidation (in step S413). Next, the
controlunit 120 examines the flag D207 of the status bit string
110 of' the eviction block address array 103 to check whether
or not the block has been rewritten (in step S414).

Only when the control unit 120 determines that the block
has been rewritten (Yes in step S414), the control unit 120
writes back the block of the data array 104 to the address
indicated by the high-order m bits 109 in the eviction block
address array 103 (in step S416). Next, the block which has
been read from the memory is written into the block 111 of the
data array 104. Then, the control unit 120 sets the flag F204 of
the status bit string 108 in the address array 102 to O (in step
S418).

SECOND EXAMPLE

A second example will be described in detail with refer-
ence to drawings. Referring to FIG. 6, a cache memory in the
second example comprises an address register 501, an
address array (way 0) 502, an address array (way 1) 503, an
eviction block address array 504, a data array (way 0) 505, a
data array (way 1) 506, a comparator A 507, a comparator B
508, a comparator C 509, and a control unit 510.

Each of the address arrays 502 and 503 is a memory having
2” entries. One entry includes one of high-order m bits 511
and high-order m bits 513, each of which are a part of the
address of a block, and one of a status bit string 512 and a
status bit string 514 each indicating a status of the block.

The eviction block address array 504 is a memory having
2" entries. One entry includes high-order m bits 515, which
are a part of the address of a block, a status bit string 516
indicating a status of the block, and a way number 517 indi-
cating in which way’s data array the block stored in the data
array is present.

Each of the data arrays 505 and 506 is a memory having 2"
entries. One entry stores a block 518 or 519 of 2* bytes.

The comparator A 507 compares high-order m bits 522 in
the address register with the address of the high-order in bits
511 of'the entry in the address array 502 accessed using n bits
520 in the address register 501 as an offset 521.

40

45

50

55

10

The comparator B 508 compares the high-order in bits 522
in the address register 501 with the address of the high-order
mbits 513 of the entry in the address array 503 accessed using
the n bits 520 in the address register 101 as the offset 521.

The comparator C 509 compares the high-order m bits 522
in the address register 501 with the address of the high-order
m bits 515 of the entry in the eviction block address array 504
accessed using the n bits 520 in the address register 101 as the
offset 521.

The control unit 510 controls the cache memory, based on
a comparison result A 523 from the comparator A 507, a
comparison result B 524 from the comparator B 508, a com-
parison result C 525 from the comparator C 509, a instruction
type (load or store) 528 from a CPU, the status bit string 512
in the address array 502, the status bit string 514 in the address
array 503, the status bit string 516 in the eviction block
address array 504, and the way number 517 which have been
read.

Though not illustrated in FIG. 6, information indicating a
(Least Recently Used, LRU) way having a long period of time
during which the way is not used is provided for each column
in order to determine a way targeted for replacement. Based
on the information mentioned above, the way targeted for the
replacement is selected.

Inthe following description, it is assumed that each address
stored in the address register 101 is composed of 64 bits, k=6
or the size of each block is 64 bytes, n=10 or the number of
entries of each of the address array 502, the address array 503,
the eviction block address array 504, the data array 505, and
the data array 506 is 1024, and m=48. Herein, the cache
memory using a two-way set associative type is shown as an
example. However, the number of ways is arbitrary. Further,
the number of eviction block address arrays is set to one.
However, the number of the eviction block address arrays is
also arbitrary. The number of ways and the number of eviction
block address arrays in a set associative method influence the
number of address comparators, and the like.

Next, operation of the cache memory in FIG. 6 will be
described. When an access to the cache memory is made, the
address of the access is set in the address register 501. The
address may be a logical address, or a physical address. It is
assumed herein that the address is the physical address trans-
lated from a virtual address by some address translation
means, and the description will be given.

Since the size of each block is 64 bytes, low-order 6 (k) bits
529 in the address register 101 constitute the address of the
block. Using 10(n) bits 520 which are higher-order than the
low-order 6 (k) bits 529 as the offset 521, entries in the
address array 502, the address array 503, and the eviction
address array 504 are read. The comparator A 507 compares
the high-order 48 (m) bits 522 in the address register 501 with
the high-order 48 (m) bits 511 of the address of the entry read
from the address array (way 0) 502. The comparator B 508
compares the high-order 48 (m) bits 522 in the address reg-
ister 501 with the high-order 48 (m) bits 513 of the address of
the entry read from the address array (way 1) 503. The com-
parator C 509 compares the high-order 48 (m) bits 522 in the
address register 501 with the high-order 48 (in) bits 515 of the
address ofthe entry read from the eviction block address array
504. The control unit 510 determines whether or not the entry
of'that block is already present in the cache memory, based on
these comparison results.

The comparison result A 523, the comparison result B 524,
and the comparison result C 525 are supplied to the control
unit 510 together with the instruction type (load or store) 528,
the status bit string 512 of the entry read from the address
array 502, the status bit string 514 of the entry read from the

US 9,053,030 B2

11

address array 503, the status bit string 516 of the entry read
from the eviction block address array 504 to determine the
operation of the cache memory. Determination of the opera-
tion by the control unit 510 and details of the operation will be
described later in a part of description of the operation.

Each ofthe status bit string 512 in the address array 502 and
the status bit string 514 in the address array 503 in the second
example is the same as the status bit string 201 in the first
example in FIG. 3. Further, the status bit string 516 in the
eviction block address array 504 in the second example is the
same as the status bit string 205 in the first example in FIG. 3.

Next, operation of the second example will be described in
detail with reference to the components in FIG. 6 and the bit
strings in FIG. 3 each indicating a status and others.

FIG. 7 is a flowchart for explaining determination of the
operation by the control unit 510 in FIG. 6 and the operation.

An accessed address is stored in the address register 501 in
FIG. 6, and entries in the address array 502, the address array
503 the eviction block address array 504, the data array 505,
and the data array 506 are accessed using the 10 (n) bits 520
in the address register 501. Determination of the operation by
the control unit 510 and the operation at this point will be
described.

The control unit 510 determines a process to be performed
according to the instruction type 528 from a CPU (in step
S601).

First, when the instruction type 528 is store (store in step
S601), the control unit 510 determines whether or not a cache
hit has occurred (in step S603). The control unit 510 deter-
mines whether or not accessed data has resulted in the cache
hit according to the comparison result A 523 from the com-
parator A 507, the comparison result B 524 from the com-
parator B 508, the comparison result C 525 from the com-
parator C 509, the status bit string 512 in the address array
502, the status bit string 514 in the address array 503, and the
status bit string 516 in the eviction block address array 504 (in
step S603).

When the comparison result A 523 indicates a match and
the flag V202 of the status bit string 512 indicates 1, when the
comparison result B 524 indicates a match and the flag V202
of' the status bit string 514 indicates 1, or when the compari-
son result C 525 indicates a match and the flag V206 of the
status bit string 516 indicates 1, the control unit 510 deter-
mines that the accessed data has resulted in the cache hit (Yes
in step S603).

On the other hand, when the comparison result A 523
indicates a mismatch or the flag V202 of the status bit string
512 indicates 0, and when the comparison result C 524 indi-
cates a mismatch or the flag V202 of the status bit string 514
indicates 0, the control unit 510 determines that the accessed
data has resulted a cache miss when the comparison result C
525 indicates a mismatch or the flag V206 of the status bit
string 516 indicates 0 (No in step S603).

When the accessed data has resulted in the cache hit (Yes in
Step S603), the control unit 510 determines in which one of
the normal address array 502, the normal address array 503,
and the eviction block address array 504 the cache hit has
occurred, based on whether the comparison result A 523 or
the comparison result B 524 has indicated the match or the
comparison result C 525 has indicated the match (in step
S606).

When the cache hit has occurred in the normal address
array 502 or 503 (No in step S606), the control unit 510 first
updates an LRU (in step S608). Then, the control unit 510
determines whether or not the block of the accessed data is
being read, based on the flag F204 of the status bit string 512
or 514 (in step S609).

10

15

20

25

30

35

40

45

50

55

60

65

12

When the flag F204 indicates 1, and then when the control
unit 510 determines that the block is being read (Yes in step
S609), the control unit 510 waits for completion of the read-
ing. On the other hand, when the flag F204 indicates 0 and
then when the control unit 510 determines that the block is not
being read (No in step S609), the control unit 510 specifies the
word of data in the block, based on low-order 6 (k) bit data,
and writes write data in the word (in step S612), and sets the
flag D203 of the status bit string 512 or 514 to 1 (instep S613).

When the cache hit has occurred in the eviction block
address array 504 (Yes in step 606), the control unit 510
writes write data to the word of the block 518 of the data array
(way 0) or the block 519 of the data array 506 of the way
indicated by the way number 517 (in step S615). The word is
specified based on the low-order 6 (k) bit data. Then, the
control unit 510 sets the flag D207 of the status bit string 516
to 1 (in step S616).

When the cache miss has occurred (No in step 603), the
control unit 510 determines whether or not replacement of a
cache block will occur (in step S617).

When all the ways in the cache memory are used (when the
flags V202 of the status bit strings 512 and 514 indicate 1), the
control unit 510 determines that the replacement will occur
(Yes in step 617). On the other hand, when there is even one
vacant way (when the flag V202 of the status bit string 512 or
514 indicates 0), the control unit 510 determines that the
replacement will not occur (No in step 617).

When the control unit determines that that the replacement
of'the block will not occur (No in step S617), the control unit
510 stores the high-order m bits 552 in the address register
501 in the high-order m bits 511 of the address array 502 or
the high-order m bits 513 of the address array 503 of the way
which is vacant, sets the flag V202 and the flag F204 of the
status bit string 512 or 514 to 1, and reads the block from a
memory. Then, when the read block has arrived, the control
unit 510 writes the read block to the block 518 of the data
array 505 or the block 519 of the data array 506, and sets the
flag F204 of the status bit string 512 in the address array 502
orthe status bit string 514 in the address array 503 to O (in step
S620). Then, the control unit 510 writes the data into the
block 518 or 519 (in step S612), and sets the flag D203 in the
status bit string 512 of the address array 502 or the status bit
string 514 in the address array 503 to 1 (in step S613).

When the control unit 510 determines that the replacement
of'theblock will occur (Yes in step S617), the control unit 510
performs the replacement of the block and block reading (in
step S621). Step S621 will be described later, with reference
to FIG. 6. After step S621, the control unit 510 writes the data
in the read block (in step S612), and sets the flag D203 of the
status bit string 512 in the address array 502 or the status bit
string 514 in the address array 503 to 1 (in step S613).

Next, when the instruction type 528 is load (load in step
S601), the control unit 510 determines whether or not a cache
hit has occurred (in step S623). The control unit 510 deter-
mines whether or not accessed data has resulted in the cache
hit according to the comparison result A 523 from the com-
parator A 507, the comparison result B 524 from the com-
parator B 508, the comparison result C 525 from the com-
parator C 509, the status bit string 512 in the address array
502, the status bit string 514 in the address array 503, and the
status bit string 516 in the eviction block address array 504 (in
step S623).

When the comparison result A 523 indicates a match and
the flag V202 of the status bit string 512 indicates 1, when the
comparison result B 524 indicates a match and the flag V202
of' the status bit string 514 indicates 1, or when the compari-
son result C 525 indicates a match and the flag V206 of the

US 9,053,030 B2

13
status bit string 516 indicates 1, the control unit 510 deter-
mines that the accessed data has resulted in the cache hit (Yes
in step S623).

On the other hand, when the comparison result A 523
indicates a mismatch or the flag V202 of the status bit string
512 indicates 0 and when the comparison result B 524 indi-
cates a mismatch or the flag V202 of the status bit string 514
is 0, the control unit 510 determines that the accessed data has
caused the cache miss when the comparison result C 525
indicates a mismatch or when the flag V206 of the status bit
string 516 indicates 0 (No in step S623).

When the cache hit has occurred (Yes in Step S623), the
control unit 510 determines in which one of the normal
address array 502, the normal address array 503, and the
eviction block address array 504 the cache hit has occurred,
based on whether the comparison result A 523 or the com-
parison result B 524 indicates the match or the comparison
result C 525 indicates the match (in step S626).

When the cache hit has occurred in the normal address
array 502 or 503 (No in step S626), the control unit 510 first
updates the LRU (in step S628). Then, the control unit 510
determines whether or not the block of the accessed data is
being read, based on the flag F204 of the status bit string 512
or 514 (in step S629). When the flag F204 indicates 1, and
then when the control unit 510 determines that the block is
being read (Yes in step S629), the control unit 510 waits for
completion ofthe reading. When the flag F204 indicates O and
the block is not being read (No in step S629), the control unit
510 specifies the word in the block 518 or 519 corresponding
to low-order 6 (k) bit data, based on the low-order 6 (k) bit
data, and read the word (in step S632).

When the cache hit has occurred in the eviction block
address array 504 (Yes in step 626), the control unit 510 reads
the word in the block 518 of the data array 505 or the block
519 of the data array 506 of the way indicated by the way
number 517, based on the low-order 6 (k) bit data (in step
S634). The word is specified based on the low-order 6 (k) bit
data.

When the cache miss has occurred (No in step 623), the
control unit 510 determines whether or not replacement of a
cache block will occur (in step S635). When all the ways in
the cache memory are already used (when the flags V202 of
the status bit strings 512 and 514 indicate 1), the control unit
510 determines that the replacement will occur (Yes in step
635). When there is even one vacant way (when the flag V202
of'the status bit string 512 or 514 indicates 0), the control unit
510 determines that the replacement will not occur (No in step
S635).

When the control unit 510 determines that the replacement
of'the block will not occur (No in step S635), the control unit
510 stores the high-order m bits 552 in the address register
501 in the high-order m bits 511 of the address array 502 or
the high-order m bits 513 of the address array 503 of the way
which is vacant, sets the flag V202 and the flag F204 of the
status bit string 512 or 514 to 1, and reads the block from the
memory. Then, when the read block has arrived, the control
unit 510 writes the read block to the block 518 of the data
array 505 or the block 519 of the data array 506, and sets the
flag F204 of the status bit string 512 in the address array 502
orthe status bit string 514 in the address array 503 to O (in step
S638). Then, the control unit 510 reads the data from the
block 518 or 519 (in step S632).

When the control unit 510 determines that the replacement
of'the block will occur (Yes in step S635), the control unit 510
performs the replacement of the block and block reading (in
step S639). Step S639 will be described later, with reference

10

15

20

25

30

35

40

45

50

55

60

65

14

to FIG. 8. After step S639, the control unit 510 reads the data
from the read block (in step S632).

Next, steps S621 and S639 in FIG. 7 will be described, with
reference to FIG. 8. First, the control unit 510 selects the way
to be replaced, according to the LRU (in step S701), and
updates the LRU.

First, the control unit 510 determines whether or not the
entry of the eviction block address array 504 is vacant (in step
S702). When the flag V206 of the status bit string 516 of the
eviction block address array 504 indicates 0, the control unit
510 determines that the entry is vacant. When the flag V206 of
the status bit string 516 in the eviction block address array 103
indicates 1, the control unit 510 determines that the entry is
not vacant.

When the control unit 510 determines that the entry is not
vacant (No in step S702), the control unit 510 determines
whether or not the block to be evicted has been rewritten,
based on the flag D203 of the status bit string 512 in the
address array 502 or the status bit string 514 in the address
array 503 (in step S704).

Only when the control unit 510 determines that the block to
be evicted has been rewritten (Yes in step S704), the control
unit 510 writes back the block 518 of the data array 505 or the
block 519 of the data array 506 to the address indicated by the
high-order m bits 511 in the address array 502 or the high-
order in bits 513 in the address array 503 (in step S706).

Next, the control unit 510 copies the high-order m bits 522
in the address register 501 to the high-order m bits 511 in the
address array 502 or the high-order m bits 513 in the address
array 503. Further, the control unit 510 sets the flag V202 and
the flag F204 of the status bit string 512 of the address array
502 or the status bit string 514 of the address array 503 to 1,
and the control unit 510 sets the flag D203 of the status bit
string 512 of the address array 502 or the status bit string 514
of'the address array 503 to O (in step S708). Then, the control
unit 510 issues to the memory a request for reading the block
which has caused the cache miss, and writes the block from
the memory into the block 518 in the data array 505 or the
block 519 in the data array 506 (in step S709).

When the control unit 510 determines that the eviction
block address array 504 is vacant (Yes in step S702), the
control unit 510 copies the high-order m bits 511 in the
address array 502 for eviction or the high-order m bits 513 in
the address array 503 for eviction to the high-order m bits 515
in the eviction block address array 504. Then, the control unit
510 sets the flag V206 and the flag D207 of the status bit string
516 to 1 and 0, respectively. Then, the control unit 510 sets the
number for the way to be evicted to the way number 517 (in
step S711).

Next, the control unit 510 determines whether or not the
block to be evicted has been rewritten, based on whether the
flag D203 of the status bit string in the address array 502 or
503 indicated by the way number 517 is 1 or O (in step S712).
Only when the control unit 510 determines that the block to be
evicted has been rewritten (Yes in step S712), the control unit
510 writes back the block 518 of the data array 505 or the
block 519 of the data array 506 indicated by the way number
517 to the address indicated by the high-order m bits 511 in
the address array 502 or the high-order in bits 512 in the
address array 503 for replacement (in step S714).

Next, the control unit 510 copies the high-order m bits 522
in the address register 501 to the high-order m bits 511 of the
address array 502 or the high-order m bits 513 of the address
array 503 indicated by the way number 517. Then, the control
unit 510 sets the flag V202 and the flag F204 of the status bit
string 512 or the status bit string 514 to 1, and sets the flag
D203 of the status bit string 512 or the status bit string 514 to

US 9,053,030 B2

15
0 (in step S716). Then, the control unit 510 issues to the
memory a request for reading the block which has caused the
cache miss (in step S717). Next, the control unit 510 waits for
arrival of the block from the memory (in step S718).

During a period before arrival ofthe block, the block which
has been invalid in a related art and will be evicted becomes
valid on the eviction block address array. Data in the block
which will be evicted remains in the block 518 of the data
array 505 or the block 519 of the data array 506.

Next, the block which has been read arrives at the cache
memory (in step S719). The control unit 510 sets the flag
V206 of the status bit string 516 in the eviction block address
array 504 to 0, for invalidation (in step S720). The control unit
510 examines the flag D207 of the status bit string 516 in the
eviction block address array 504 to check whether or not the
block has been rewritten (in step S721).

Only when the control unit 510 determines that the block
has been rewritten (Yes in step S721), the control unit 510
writes back the block 518 of the data array 505 or the block
519 of the data array 506 indicated by the way number 517 to
the address of the eviction block address array 504 indicated
by the high-order m bits 515 (in step S723). Then, the control
unit 510 writes the block read from the memory into the block
518 ofthe data array 505 or the block 519 of the data array 506
indicated by the way number 517. Then, the control unit 510
sets the flag F204 of the status bit string 108 in the address
array 102 to O (in step S725).

Next, operations of the cache memory in the second
example will be described, with reference to FIGS. 9 to 15.

FIG. 9 shows a point of time at which data for a different
block to be cached in a same column has been loaded in a state
where blocks are cached in two ways. First, the column is
selected using n bits 802 in an address register 801 as an
index. Then, entries are read from an address array (way 0)
803, an address array (way 1) 804, and an eviction block
address array 805, and are respectively compared with
0x000001¢cc0003 of high-order m bits 806 in the address
register.

High-order m bits 807 in the address array (way 0) 803 are
0x000001¢cc0001, high-order m bits 808 in the address array
(way 1) 804 are 0x000001¢cc0002, and an entry in the eviction
block address array is invalid. Consequently, it can be seen
thata cache miss has occurred. Since the entries of the address
array (way 0) 803 and the address array (way 1) 804 are valid,
replacement will occur. Then, by referring to an LRU809, a
way O is targeted for the replacement. Then, the LRU809 is
updated to 1.

FIG. 10 is a diagram for explaining a process of validating
an entry in the eviction block address array. Since the entry in
the eviction block address array 805 is vacant, the high-order
m bits 807 of the way O targeted for the replacement are
evicted are copied to high-order in bits 810 of the eviction
block address array. Then, a status bit string 811 is set to 10,
and a way number 812 is set to 0. This makes the entry in the
eviction block address array valid.

FIG. 11 explains a write back process when a block tar-
geted for the replacement has been rewritten. Since the flag D
of a status bit string 813 in the address array (way 0) 803 is 1,
the block on the data array of the way 0 is written back to the
address indicated by the high-order m bits 807.

FIG. 12 is a diagram for explaining a process of registering
a block which has caused a cache miss in the address array,
and reading the block which has caused the cache miss from
a memory. The high-order in bits 806 in the address register
801 are copied to the high-order m bits 807 in the address
array 803 of the way O indicated by the way number 812.
Then, a flag VDF of the status bit string 813 is set to 101.

5

10

15

20

25

30

35

40

45

55

60

65

16

Thereafter, a request for reading the block which has caused
the cache miss from the memory is issued.

FIG. 13 shows a state where during reading of the block
which has caused the cache miss, a cache hit has occurred in
the entry in the eviction block address array at a time of
writing. A store instruction to the address in the address
register 801 is executed, and the entries in the address arrays
803, 804, and 805 are read, using the n bits 802 as the index.
Then, it is determined that 0x000001cc0001 ofthe high-order
m bits 806 in the address register 801 match the high-order in
bits 810 in the eviction block address array 805, so that the
cache hit has occurred. Then, write data is written into the
block of the data array of the way 0 indicated by the way
number 812. The flag D of the status bit string in the eviction
block address array 805 for storing rewriting becomes 1.

FIG. 14 shows a process when the block read from the
memory has arrived at the cache memory. First, the flag V of
the status bit string 811 of the eviction block address array
805 is set to 0, thereby invalidating this entry. Then, it is
checked whether or not rewriting has been performed,
according to the flag D of the status bit string 811. Since the
flag D is 1, it means that the rewriting has been performed due
to the cache hit in the eviction block address array at the time
of writing. Thus, the block of the data array of the way 0
indicated by the way number 812 is written back to the
address indicated by the high-order m bits 810.

FIG. 15 shows a process of writing the block read from the
memory into the data array. The block read from the memory
is written into the data array of the way 0 indicated by the way
number 812, and then the flag F of the status bit string 813 in
the address array 803 of the way 0 is set to O.

Variations and adjustments of the exemplary embodiment
and the examples may be made within the overall disclosure
(including the claims) of the present invention, and based on
the technical concept of the present invention. Various com-
binations and selections of various disclosed elements are
possible within the scope of the claims of the present inven-
tion. That is, the present invention of course includes various
variations and modifications that could be made by those
skilled in the art according to the overall disclosure and the
technical concept.

The present invention includes inventions according to the
following additional modes.

(Mode 1)

A cache memory according to the first aspect described
above.
(Mode 2)

The cache memory according to mode 1, wherein the con-
trol unit invalidates the address of the first block stored in the
second address array when writing the second block into the
data array.

(Mode 3)

The cache memory according to mode 1 or 2, wherein the
second address array stores an identifier for a way in which
the first block is stored.

(Mode 4)

The cache memory according to any one of modes 1 to 3,
wherein the second address array stores a flag indicating
whether or not the first block has resulted in a cache hit and
has been rewritten.

(Mode 5)

The cache memory according to mode 4, wherein the con-
trolunit, before the second block is read from the memory and
written into the data array, refers to the flag stored in the
second address array and, if the first memory has been rewrit-
ten, writes back the first block to the memory.

US 9,053,030 B2

17
(Mode 6)

A cache memory according to the second aspect described
above.
(Mode 7)

An electronic computer including the cache memory
according to any one of modes 1 to 6.

(Mode 8)

The electronic computer according to mode 7, including a
multi-core or multi-thread processor.
(Mode 9)

A cache memory control method according to the third
aspect described above.
(Mode 10)

The cache memory control method according to mode 9,
further comprising invalidating the address of the first block
stored in the second address array when writing the second
block into the data array.

(Mode 11)

The cache memory control method according to mode 9 or
10, comprising storing in the second address array an identi-
fier for a way in which the first block is stored.

(Mode 12)

The cache memory control method according to any one of
modes 9 to 11, comprising storing in the second address array
a flag indicating whether or not the first block has resulted in
the cache hit and has been then rewritten.

(Mode 13)

The cache memory control method according to mode 12
comprising, before the second block is read from the memory
and writing into the data array, referring to the flag stored in
the second address array and, if the first block has been
rewritten, writing back the first block to the memory.

What is claimed is:

1. A cache memory comprising:

a data array that stores a cached block;

a first address array that stores an address of the cached
block;

a second address array that stores an address of a first block
to be removed from the data array when a cache miss
occurs; and

a control unit that transmits to a processor the first block
stored in the data array as a cache hit block, in response
to the address stored in the second address array result-
ing in a cache hit during a period before a second block
that has caused the cache miss to be read from a memory
and written into the data array, wherein the cache
memory is configured to wait for the second block to be
read from memory when it is determined that an entry in
the second address array corresponding to the first block
is not vacant.

2. The cache memory according to claim 1, wherein the
control unit invalidates the address of the first block stored in
the second address array when writing the second block into
the data array.

3. The cache memory according to claim 1, wherein the
second address array stores an identifier for a way in which
the first block is stored.

10

15

20

25

30

35

40

45

50

55

18

4. The cache memory according to claim 1, wherein the
second address array stores a flag indicating whether or not
the first block has resulted in the cache hit and has been
rewritten.

5. The cache memory according to claim 4, wherein the
controlunit, before the second block is read from the memory
and written into the data array, refers to the flag stored in the
second address array and, in response to the first block having
been rewritten, writes back the first block to the memory.

6. A cache memory comprising:

an address array that stores an address of a block to be

removed from a data array when a cache miss occurs;
and

a control unit that transmits to a processor the block stored

in the data array as a cache hit block, in response to the
address stored in the address array resulting in a cache
hit during a period before a block that has caused the
cache miss being read from a memory and stored in the
data array, wherein the cache memory is configured to
wait for the second block to be read from memory when
it is determined that entry in the second address array
corresponding to the first block is not vacant.

7. An electronic computer comprising the cache memory
according to claim 1.

8. The electronic computer according to claim 7, compris-
ing a multi-core or multi-thread processor.

9. A control method of a cache memory comprising a data
array that stores a cached block, a first address array that
stores an address of the cached block, and a second address
array, the method comprising:

storing in the second address array an address of a first

block to be removed from the data array when a cache
miss occurs; and

transmitting to a processor the first block stored in the data

array as a cache hit block, in response to the address
stored in the second address array resulting in a cache hit
during a period before a second block which has caused
the cache miss being read from a memory and written
into the data array, wherein the cache memory is config-
ured to wait for the second block to be read from
memory when it is determined that an entry in the second
address array ding to the first block is not vacant.

10. The cache memory control method according to claim
9, further comprising: invalidating the address of the first
address stored in the second address array when writing the
second block into the data array.

11. The cache memory control method according to claim
9, comprising storing in the second address array an identifier
for a way in which the first block is stored.

12. The cache memory control method according to claim
9, comprising storing in the second address array a flag indi-
cating whether or not the first block has resulted in the cache
hit and has been rewritten.

13. The cache memory control method according to claim
12, comprising, before the second block is read from the
memory and written into the data array, referring to the flag
stored in the second address array and, if the first block has
been rewritten, writing back the first block to the memory.

#* #* #* #* #*

